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By Robert T. Yntema
SUMMARY

A Rayleigh energy approach utilizing the bending mode of the nonro-
tating beam in the determination of the bending frequency of the rotating
beam is evaluated and is found to give good practical results for heli-
copter blades.

Charts are presented for the rapid estimation of the first three
bending frequencies for rotating and nonrotating cantilever and hinged
beams with varisble mass and stiffness distributions, as well as with
root offsets from the axis of rotation. Some attention is also given to
the cage of rotating beams with & tip mass.

A more exact mode-expansion method used in evaluating the Rayleigh
approach is also described. Numerous mode shapes and derivatives obtained
in conjunction with the frequency calculations are presented in tabular
form.

INTRODUCTION

Designers of helicopter rotor blades generally agree that accurate
means are needed for estimating the natural bending fregquenciesgs of the
rotating blades in order to obtaln a blade design which is as free as
possible from resonant or near-resonant excitation by the periodic
loading on the rotor. Although numerous methods are available for deter-
mining the bending frequencies of rotating blades (see, for example,
refs. 1 to 14), designers have expressed the need for a simplified, yet
reasonsbly accurgte, procedure for thelr determination, preferably in
the form of a set of charts. With this need in mind, an investigation
was undertaken which had a twofold purpose: (a) an evalustion to show
whether a Rayleigh energy approach utilizing the mode shepe of the non-
rotating beam may be employed to obtain close gpproximations for the
natural bending frequencies of the rotating beam and (b) a set of charts

lAn smplified and extended version of NACA RM 154602, 195k4.
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which would permit the rapid estimation of the first three bending fre-
quencies of both nonrotsting and rotating hinged and cantilever blades.
The main purpcose of this report is to present this evaluation and the _
frequency charts.

The Rayleigh energy approach was evaluated with respect to such
items as various rotationsl speeds, higher modes, flapping-hinge or root
offset, variable blade mass and stiffness distributions, and a large con-
centrated tip mass. The evaluation was made by comparing frequency
results obtained by the Rayleigh method with results obtalined by a more
accurate mode-expansion method. The details of the mode-expansion method
are given in appendix A.

The charte for frequency estimetion were obtained by considering
various famllies of beams with selected mass and stiffness distributions
and were derived for both hinged and cantllever beams., The frequencies of
both nonrotating end rotating cases may be estimaeted for (a) besme with
and without offset which have mass and stiffness distributions which can
be approximated by linear reletions and (b) beams with uniform mass and
stiffness distributions plus a concentrated mass at the tip.

If the bending frequencies of the nonrotating beams are known, a
third set of charts permits the estimstion of the bending frequencies of
rotating beams with gpproximately linear stiffness distribution and arbl-
trary mass distribution.

As an adjunct to the Rayleigh gpproach utilizing the nonrotating-
beam mode shapes, a method is presented in appendix B which permits a
fairly accurate determination of the first bending mode and frequency of
a rotating or nonrotating hinged beam with a tip mess from a knowledge
of the first bending mcde of the nonrotating beam without & tip mass.

The report alsc presents bending-mode results, obtalned in conjunc-
tion with the frequency determination, which show the effect of the param-
eters on mode shape. Many of these mode shapes are tabulated in normal-
ized form together with their first and second derivatives, or as mode
coefficients (coefficients of an expansion in terms of uniform-beam modes).
These results can be used in connection with the modified approach of
eppendix B or in other analyses. .

In order to facilitate the further applicetion of the mode-expansion
method to the accurate determination of modes and frequencles of rotating
beams with linear mass and stiffness distributions, concentrated tip mass,
and offset different from those considered herein, certain integrals which
have been evaluated are.also presented in tabular form.
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SYMBOLS
mode coefficlents for the nth rotating-beam mode
(see eq. (A3))
m L4
nonrotating-beam bending frequency coefficient, ayg ﬁ%
o]
moT*
rotating-beam bending frequency coefficient, gy =T
o

beam-stiffness-distribution constant (see eq. (A12))

pendulum- or zeroeth-mode coefficient (see appendix B)

lengthwise bending stiffness distribution for beam

bending stiffness of beam at root

nondimensional bending stiffness distribution for
beam, EI(x)/EI, ‘

Southwell coefficient (see eqs. (4) and (5))

zero-offset Southwell coefficient

offset-correction factor for Southwell coefficient

zero-offset rotating-beam frequency coefficient; found to
be essentially independent of beam mass dlstribution
(see eq. (11))
beam-mass-distribution constant (see eq. (Al2))
beam length, measured from point of root fixity to tip
lengthwise mass distribution for beam (mass per unit length)

mass per unit length of beam at root

nondimensionsl mass distribution for beam, m(%)/mg

part of beam masss distribution which is continuous (not
concentrated)

mass concentrated at tip of beam



5(x-L)

5(%-1)

N,

“r
“NR

Subscripts:
n
F

t
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nondimensional tip-mass ratio, Mt/hoL

lengthwise distribution of tension force in beam, T (x)q2

lengthwise-~dlstribution function for tension force
(see eq. (2))

spanwlse coordinate along beam measured from root

nondimensional spanwise coordinste, x/L

bending mode shape of nonrotating beam

bending mode shape of rotating beam

Dirac delta function

Dirac delte functlion in nondimensionsl coordinates

offset of hinge or point of fixity from axis of rotation

nondimensional offset, e/L

dummy vagiables for x and X

characteristic number for nonrotating uniform beem with
mass at tip; ldentical to sguare root of nonrotating-

beam bending frequency coefficient

bending mode shape for nonrotating uniform beam normalized
at tip

rotational speed of beam

natural bending frequency of rotating beam

natural bending frequency of nonrotating beam

integral number designating naturel bending mode of bean
beam cantilevered or fixed at root

tip of beam

Primes mean differentlation with respect to x or X unless
indicated otherwise.
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THE RAYLEIGH APPROACH APPLIED TO A ROTATING BEAM
Description
The problem being treated in this report is a rotating beam vibrating
freely in one of its natural bending modes. By equating the kinetic energy
at zero displacement to the potentisl energy of both the bending and cen-

trifugal forces at maximum displacement, the following frequency equetion
for vibration perpendicular to the plane of rotation can easily be derived:

L
n2 2
EIy. "“ax fLTy’dx
2 _ J[ n A 1n

+ Q2 (1)

0
. L
my,2ax f my,2dx
0 0

where n refers to the mode under consideration and

L
T, =f (n + e)m dn (2)
X

Equation (1) ylelds an exact value for the nth bending frequency of a
beam rotating at any rotational speed @ if the nth natural bending mode
shape of the rotating beam is known for this value of (. Unfortunately,
the mode shape is usually Just as much of an unknown as the frequency is.
An estimation of the frequency may be made, however, by meking use of the
well-known Rayleligh principle; that is, a mode shape which is consistent
with the constraints of the system is sssumed and is used to evaluate the
energy integrels which, in turn, give an approximate value for the fre-
quency. In this report the nonrotating-beam mode shape is chosen as the
approximation for the rotating-beam mode shape, and an evaluation is made
to show whether the use of such a shape yields close gpproximations to
the exact frequencies of the rotating beam.

If the nth mode shape of the nonrotating beam Y, is substituted

into equation (1), the first term becomes exactly the square of the
bending frequency of the nonrotating beam. By denoting the ratio in the
second term by Kh, a Southwell coefficient, the freguency equation tekes

the following simplified form:

2 -

ap 2 = oyg 2+ 6,07 (3)



6 NACA TN 3459

where

L
J[ Y -2der (n + e)m dn
(o)

Ky = ()

mezdx

This expression for K, can be subdivided into two independent parts
ag follows:

Kn = Ko_ + Kp e )

where both Kon and Kin are independent of the offset e and are

defined ag follows:
L
fY'zdxl;'qmdn

on " mead.x

L 5 L
d£ p def m dn
- x

K
ln J[L 5
mY “dx
0 n

In the remainder of this report K, 1is referred to as the zero-offset
n

r (6)

J

Southwell coefficlent and Kin is referred to as the offset-correction
factor for the Southwell coefficlent.
It is convenient to write ayp 2 in terms of a nonrotating-beam
n

frequency coefficient a, and the mass and stiffness of the beam at the
root as
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ET
2 _g2 0
SR, — (1)
O

By means of equations (5) and (7), equation (3) may be written as

o _ 2Bl 2 .
ag ° = &, mo;; + (Kon + Kﬁ{f)ﬂ (8)

Equation (8) with Ko, K, , end e in nondimensional form serves
T

as the basls for the charts for rapid frequency estimation to be pre-
sented subsequently in this report. These charts provide values of &y,

Ko, and K which, in conjunction with the mass and stiffness of the
n n

beam at the root, the length of the beam, the hinge offset, and the rota-
tional speed, permit rapid estimation of the first three bending fre-
quencies of rotating or nonrotating beams.

If the mass distribution of the blade is given by a simple anslytic
function, the integral expression for Ty (eq. (2)) can usually be

evaluated exactly; for arbitrary mass distribution, however, numerical-
integration methods such as are given in reference 15 must be employed.
Because of the nature of the numerical-integration procedure used in the
present paper, a slightly different form of the expression for K, was

tion by parts on the numerator of equation (4), and in nondimensional
form the result appears as ’

found to be useful. This form can be obtained by performing sm-integra-

1 . pX
f (i+é)mdirYn'2dﬁ
g =40 Jo
n

fl @Y, 2ax
0

whence the definitions for Kp and Kln are evident.

(9)

An additional form of equation (3) i1s now presented for use in sub-
sequent sections of this report. Dividing equation (3) by “Nan yields

.
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2 2
.ah_n -_-]_+Kn.9'—
AR R
n
A2 2
=1+KIIE Q (lO)

owr, | \owRy

This form of equation (3) was found to be useful in the evaluation of the
Rayleigh approach. Hereinafter, in this report an/aNRn i1s referred to

as the fregquency parameter and Q/“NRl i1s referred to as the rotatlonal-

speed pesrameter. Also, for subsequent use 1n this report, a new zero-
offset rotating-beam frequency coefficient Kbn' is now defined as

2 2
(“’NRl)F = o, % (11)

where the subscript F indicates that a; 1s the nonrotating-beam

frequency coefficient for the beam cantilevered at the root. All other
terms are for the beam with 1ts actusl root condition, that is, either
cantilevered or hinged.

"f%‘is‘shown_subseqpently in this report that this new freguency
coefficlent is insensitive to beam mass distribution and should there-
fore e useful in esnlimating bending frequencies for famillies of beams
with similar stiffness distributions. As is aspparent from equation (11),
the fundamental frequency of the nonrotating beam treated as a cantilever
must be known in addlition to the bending frequencies of the beam with
the actual root condition (cantilevered or hinged).

Evaluation of Rayleigh Approach

In order to determine the accuracy, usefulness, and possible limita-
tions of the Rayleigh approach based on nonrotating-beam bending modes,
the bending frequencies were celculated by this spproach for a series of
rotating beams with systematically varied parameters; the frequenciles
obtained in this manner are compared in this section with the results
obtained by the more exact mode-eéxpansion method of appendix A. For the
cantilever beams, five uniform-cantilever-beam beénding modes were used in

Q
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the expansion; for the hinged beams, & pendulum mode was inciuded in
addition to filve hinged-beam bending modes.

The cases studied by both methods are shown in figure 1. Both
cantilever and hinged beams are considered for the following cases:

(a) Uniform beams with O- and 10-percent root offset

(b) Beams with mass and stiffness distributions varying linearly
from the root value to zero at the tip and with O- and 10-percent root
offset

(¢) Uniform beams with a mass at the tip.

The results for all the cases treated were obtained in nondimen-
slonal form and are presented in plots in which the varistion of bending
frequencies with rotational speed as predicted by the exact method of
appendix A and by the Rayleigh approach may be compared. In each of the
figures introduced in this section the abscissa is the squared nondimen-
sional rotationsl-speed parameter (the squared ratic of rotational speed
to the first bending frequency of the nonrotating beam) and the ordinate
is the squared nondimensional frequency parameter (the squared ratio of
the nth bending frequency of the rotating beam to the nth bending fre-
quency of the nonrotating beam).

The range of the rotational-speed parameter 1n each case corresponds
roughly to that encountered in current helicopters with some latitude for
new design. §Since the first bending frequency of a hinged beam is roughly
four times the first bending frequency of the same beam fixed at the roct,
widely different scales result for the .hinged and cantilever teams. The
absclisss renge also varied with tip mass because the fundamental fre-
quency of a nonrotating beam decreases with increase in tip mass. For
the wiform cantilever beam with a tip mass, this veriastion is large and
thus results in a greatly expanded abscissa scale with each increase in
tip mass. For the uniform hinged beam with & tip mass, the effect of
tip mass on the nonrotating fregquency is relatively small and thus the
abscissa range was not extended asppreciably with each lncrease in tip
mass.

Hinged beams without tip mass.- The variation of bending frequency

with rotational speed for a uniform hinged beam is shown in figure 2 for .
offsets of O and 10 percent. For this case the Rayleigh approach may be
seen to be very accurate for all three modes throughout the entire
rotational-speed range covered. The meximum error is about 3 percent in

the frequency squered and thus only about l%-percent in the frequency.

This maximm error occurs at the highest rotational speed and is roughly
the same for all three modes.
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Frequency results for the hinged beams with linear mass and stiff-
ness dlstributions are shown in figure 3 for offsets of O and 10 percent.
From this figure it is evident that the results obteined by the Rayleigh
method for this caese are very accurate, even for the highest rotational
speeds shown.

A comparison of the exact frequency results for the uniform and
"linear" hinged beams is presented in figure 4 for the case of zero off-
set. The difference between the results for the two beams is very marked,
particularly for the first mode. One of the most importent things to be
noted in this comparison ig the large difference in slope between the two
curves for the first mode. The average slope of each of these lines 1s
directly proportional to the Southwell coefficient for the first mode
(see eq. (10)), and the large difference in slope indicates that a single
value of this ccoefficlent could not adequately predict the first-mode-
frequency variations for both beams. This result contradicts the often
made assumption that the Southwell coefficient is largely independent of
beam mass and stiffness distribution.

For the higher modes the slope of each of the lines (fig. 4) is also
proportional to the Southwell coefflcient, but unfortunately each beam
has a different constant of proportionality. Thus, it cannot be observed
directly from this figure that the Southwell coefficlent for the higher
modes also variles appreciably with beam characteristics; this fact, how-
ever, 1ls evident from the charts for frequency determination to be pre-
sented subsequently.

Cantilever beams without tip msss.- The frequency of rotating cantil-

lever beams as well as of hinged beams is of interest in the analysis of

a teetering rotor because both symmetrical (cantilever) modes and anti-
symmetrical (hinged) modes mey be excited. Comsequently, in the Pfollowing
paragraphs the Rayleigh approach employed in the present report is eval-
uated for cantilever beams.

Frequency results for uniform cantllever beams are presented in
figure 5. The Rayleigh results are in good sgreement with the more exact
results for the second and third modes. For the first mode, however, the
maximum error is somewhat larger, about 5 percent in the fregquency.
Nevertheless, the effect of offset on the frequency variation is pre-
dlcted feirly accurately for all three modes.

For compaerison, the results of approximating the first cantilever
mode by the pendulum mode of a hinged beam are glso given in Ffigure 5.
Frequency results based on this shape are seen to be always less than the
exact values. As the rotational-speed parameter increases, these results
become more and more accurate; for the lower rotational speeds, however,
the use of the nonrotating-beam first mode shape ylelds ‘the most accurate
results. The effects of root offset on frequency are predicted by the
use of elther the pendulum mode or the first cantilever bending mode.
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The variation of bending frequency with rotational speed is shown
in figure 6 for a cantilever beam with linear mass and stiffness distri-
bution and with offsets of O and 10 percent. As is the case for the uni-
form cantilever, the Rayleigh fregquency results, based on the nonrotating-
beam cantilever mode, are very accurate for the second and third modes,
but are not so accurate for the first mode at the higher wvalues of the
rotational-speed perameter; however, the effect of the offset is again
predicted fairly accurately.

The Rayleigh results based on a pendulum mode, which are also shown
in figure 6, are sgain seen to be always less than the exact values and
to increase in sccuracy as the rotationsl-speed parameter increases. At
the lower rotational speeds, however, these results are again appreclably
less accurate than those based on the first cantilever bending mode shape.
As was the case for the uniform beam, both the pendulum mode and the first
cantilever mode predict the effects of the offset equally well.

A comparison of the frequency results for the uniform and "linear"
cantilever beams with zero offset is given in figure 7. From the figure
it is evident that there is only =z smsll difference in the slope of the
exact first-mode frequency curves and thus in the Southwell coefficient
for the two beams. This small difference, however, is predicted, although
not too accurately, by the Raylelgh approach based on the nonrotating-beem
mode shape; whereas, if a pendulum-mode spproximation had been used, no
difference could have been predicted.

For the higher modes, the effects of mass and stiffness distribution
on frequency are more pronounced and lead asgain to the conclusion that,
in general, a single value of the Southwell coefficient cannot accurstely
predict the frequency variations for beams with apprecisbly different mass
and stiffness distributions.

The error in the first-mode-frequency results obtained by the Ray-
leigh approach (fig. 7) is almost the same for both besams. Thus, this
error apparently is independent of beam mass and stiffness distribution;
this observation suggests the possibility of applying a correction,
based on the known errors for these particular beams, to the Rayleigh
results obtained for cantilever beams with other mass and stiffness
distributions.

Cantilever beams with tip mass.- For beams with a mass at the tip,

the results for the cantilever case suggest certain simplifications which
may be carried over to the hinged beams; thus the cantilever results are
discussed first.

The variation of bending frequency with rotational speed for a uni-
form cantilever beam with a concentrated mass at the tip and zero offset
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is given in figure 8. Results are presented for two cases: tip mass
equal to the beam mass and tip mass equal to one-half the beam mess.
Figure 8 shows that the Rayleigh results are of the same order of accu-
racy as for the beam without tilp mass - very accurate for the second and
third modes but relatively less accurate for the first mode.

It is of interest to note that for each mode the variation of the
frequency parameter with the rotational-speed parameter is almost identi-
cal for the two values of tip mass considered. In fact, if these results
are compared with those for the beam with zero tip mess in figure 5, the
variation for all three cases is seen to be practically identical.

The foregolng observations create the impression that the zero-
offset Southwell coefficient for each mode 1s independent of the value
of the tip mass. This assumption is true for the first mode but is mis-
leading for the higher modes as is evident from equation (lO) where it

can be seen that a constant of proportionality QxNR /QNR )2, which varies
1 n

with tlp mass, is involved. Nonetheless, inasmuch as this constant of
proportionality is defined by a ratio of nonrotating-beam frequencies, a
new rotating-beam frequency coefficlent, or modified Southwell coeffi-
cient Kon' can be defined (see eq. (11)) which is essentially indepen-

dent of tip mass and, as will be shown subsequently, of beam mass distri-
bution as well. -

Hinged beams with tip mass.- The variation of bending frequency with
rotational speed for a uniform hinged beam with a concentrated mass at
ite tip and zero offset is given in figure 9. Results are given for two
cases: ‘tip mass equal to beam mass and tip mass equal to one-half the
beam mass. The Rayleigh results are very accurate for all three modes
over the entire range of variables investigated, and it may be inferred,
particularly for the first mode, that the Rayleigh procedure will yield
reasonably accurate results for appreciably larger values of the
rotational -speed parameter and tip mass.

From figure 9 the frequency variation can readily be seen to be con-
slderably different for the two values of tip mass, unlike the cantilever
results of figure 8, for which the frequency variation is essentially
independent of tip mass. In an attempt to explain this difference between
the two cases, the results of figure 9 were replotted in figure 10 as a
function of the rotational-speed parameter used for the cantilever cases,
that is, the squared ratio of rotational speed to the bending frequency
of the beam in the first cantilever mode. From figure 10 the frequency
variation with this rotational-speed parameter may be seen to be essen-
tially independent of tip mass, as was noted for the cantilever. Conse-
quently, a new constant which 1s insensitive to the mass distribution of
the beam is suggested. For hinged beams this constant is also defined by
equation (11). The invarience of this constent with beam mass distribu-
tion is discussed subsequently in this report.
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Estimation of fundamental frequency of beam with tip mass.- A method
which permits the sccurate approximation of the first bending mode shsape
of a hinged beam with a tip mass from a knowledge of the first mode shape
of the beam without a tip mass 1is presented in appendix B. Once such a
shepe has been determined, the computation of the nonroteting-beam first-
mode frequency and the associated Southwell coefficient is a relastively
simple matter. In order to illustrate the accuracy of this procedure,
nonrotating-beam bending frequencies and Southwell coefficients were com-
puted for the uniform beam with two values of tip mass and were compared
with the values obtained by using the exact nonrotating-beam bending mode
shapes.

For the case of a uniform beam with tip mass equal to one-half the
beam mass, the nonrotating-beam frequency squared obtained by using the
approximate shape was found to be too high by about 2 percent, and the
associated Southwell coefficient was found to be too low by about 2 per-
cent. If these errors had both been in the same direction, the first
bending frequency of the rotating beam would have differed by only about
1 percent or less from the Rayleigh result based on the exact nonrotating-
beam mode shape. However, because the two errors tend to cancel, the
difference would be much less.

The results for the case of g tip mess equal to beam mass showed
very similar characteristies, although the error in nonrotating-beam
frequency was slightly higher.

Although the method of appendix B has been evaluated only for the
case of uniform beems, it is believed that the method will be equally
accurate for beams with other mass or stiffness distributions.

CHARTS FOR BENDING-FREQUENCY DETERMINATION

In the preceding section, the Rayleigh approach was evaluated and
the conclusion was reached that Southwell coefficients obtained by using
nonrotating-beam mode shapes lead to reassonably accurate bending fre-
quencies of rotating beams, at least for the range of the rotational-
speed parameter encountered in helicopter blades. The evaluation also
showed that the Southwell coefficients can vary sppreciably with beam
characteristics. This section describes a group of charts based on the
Rayleigh approach which permit the rapid estimation of bending frequencies
of roteting and nonrotating beams.
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Rotating and Nonrotating Beams Without Tip Mass

In order to provide a means for the rapid, yet reasonably accurate,
estimation of rotor-blade bending frequencies, nonrotating-beam frequency
coefficients, zero-offset Southwell cdefficlents, and offset-correction
factors for the Southwell coefficients have been computed for a series of
beams with linear mass and stiffness distributions and have been compiled
in chart form. The range of mass and stiffness distributions was selected
to encompass variations found in currently manufactured blades with some
latitude for new design. All the constants are based on the mode shapes of
the nonrotating beam, which were obtained by standard numerical-iteration
procedures. (See section entitled "Results for Bending Modes" for more
details regarding these procedures. )

The form of the Rayleigh energy equation which is used in conjunction
with the charts to obtain bending frequencies is equation (8) with Ko, 2

Kln’ and e in nondimensional form:

wp = &y ‘L + (EO + Rin€>92 (12)

where K = and K = L. The charts for frequency determinstion
On Kbn 1n ln q Y

are presented in figures 11 to 16. In each chart, the abscissa 18 the
ratio of the beam mass per unit length at the tip of the beam to the mass
per unit length at the root; 1.0 represents a constant-mass beam and O a
beam in which the mass varies linearly to zero at the tip. Curves are
presented for three different stiffness variations: +thée solid curves for
beams with constant stiffness, the long-dash curves for beams where the
stiffness drops linearly to half the root value at the tip, and the long-~
dash, short-dash curves for beams which have zero stiffmness at the tip.

Each of these curves is falred through only three points, one at
each end and one at the middle; for the Scuthwell coefficients and offset-
correction factors, this procedure should involve little error because, in
most cases, the variation is nearly linear, but for the frequency coeffi-
cients the fairing may appear to be questionable. However, the fairing of
these curves was not entirely arbitrary. The fundamental bending frequency
of cantilever beams with linear mass and stiffness distributions 1e given
in reference 16 for cases in which the mass and stiffness variations are
proportional, that is, where

t - %
m

(o] o]
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Two of the cases considered in this reference, namely, the ones where
both ratios equal O and 1, are identical to cases treated in this report
and the results for these are in good agreement. The other cases treated
in reference 16, namely, those for which this ratio is 0.2, 0.4, and 0.6,
were used in faliring the curves of ay for the cantilever case. The

other curves for the frequency coefficilent for cantilever and hinged beams
were then faired by using this first set of curves as a guide.

Charts which permit the rapid estimation of nonrotating-besm fre-
quency coefficients, zero-offset Southwell coefficients, and offset-
correctlon factors for the Southwell coefficients are presented in fig-
ures 11 to 13 for beams hinged at the root and in figures 1% to 16 for
beams fixed at the root.

Since the zero-offset Southwell coefficient for the pendulum mode is
always unlty regardless of the mass and stiffness distribution of the beam,
it is not included in figure 12. However, the offset-correction factor
for this mode is not independent of mass distribution but is independent
of stiffness distribution, as indicated in figure 13. The pendulum-mode
results 1n figure 13 are also given in reference 4.

As was mentioned in the section of this report entitled "Evaluation
of Rayleigh Approach," the zero-offset Southwell coefficients for the
first cantilever mode (given in fig. 15) will yield accurate rotational
frequencies only at relatively low values of the rotational-speed parameter
and must be corrected in accordance with the results of figure 5 or 6 at
higher values of this parameter. A fixed-percentage correction cannot be
given because the error ls a function of the rotational-speed parameter.

The effect of root fixity on the Southwell coefficients can be noted
by comparing the curves of figure 12 with those of figure 15. The first-
mode results for the cantilever beams should be compared with the pendulum-
mode Southwell coefficient for the hinged beam which is always uwnity for
the case of zero offset. Likewise, the second-mode curves of figure 15
should be compared with the first-mode curves of figure 12, and so forth
for the higher modes. From this comparison it is seen that the effects
of root fixity on the Southwell coefficlents are fairly small and can
probebly be neglected for rough epproximations in all cases, except for
the first cantilever mode. With this assumption, the results of figure 12
for the third bending mode can be used as reasonable spproximstions for the
fourth cantilever mode.

The variation of the Southwell coefficient may be seen from figures 12,
13, 15, and 16 to be relatively insensitive to beam stiffness distribution,
particularly for cantilever beams but also for the hinged beams. This
observation, coupled with the facts that frequency is proportional to the
square root of the Southwell coefficient and that the influence of the
Southwell coefficient decreases for higher modes (for constant rotational
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speed), leads to the conclusion that fairly good approximations to the
Southwell coefficients for beams with other than linear stiffness distri-
butions may also be obtainable from this set of charts. The examples
presented in the following section appear to bear out this conclusion.

Application of charts to several actual helicopter blades.- To illus-
trate the use and the type of accuracy which can be expected from the
frequency charts of figures 11 to 16 and to demonstrate that the charts
work well even when the mass and stiffness distributions of the beams are
not exactly linear, bending frequencies have been estimeted for the first
three modes of four existing hellcopter blades, all of which are hinged.
The following procedure, which may be made clearer by reference to the
sketches in table I, was used in the estimation:

(a) Straight lines were faired through the mass and stiffness dis-
tributions for the blede; large values near the root were ilgnored.

(b) From these fairings, the effective root values m, and EI,
and the necessary tip-root ratios were obtained.

(c) By using these ratios, values of an, Ky, and ﬁl were
obtained from the appropriate charts (figs. 11 to 16).

(d) Substitution of these constants and € into the Rayleigh equa-
tion (eq. (12)) yielded the bending frequencies at zero and the rated rotor
speed.

The mass and stiffness distributions for the blades considered are
shown on the left side of table I. The actual distribution is given by
the solid lines, and the linear spproximation, selected to represent thils
variation, is given by the dashed lines. These linear approximations
used in estimating the frequencies were the initial ones selected, and
no attempt was made to improve them in order to obtain the best agreement
for all modes. The frequencies shown as "exact"” in table I are values
furnished by the manufacturer.

A comparison of the exact and estimated results glven in table I for
these blades indicates that the estimated results are very accurate when
the crudeness of the linear approximations used is consldered.

Although no comparisons have been made for cantilever blades because
sufficient information regarding such blades was not avallable, even more
gccurate resulis should be obtainable for this end condition since large
values of root stiffness can be taken into account more accurately by con-
sldering the blade to be cantilevered at the outboard edge of the stiff
region and then using the offset-correction factor for the Southwell
coefficients.
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Beams With a Mass at the Tip

Uniform cantilever beam.- Expressions defining the bending frequencies
and mode shapes of nonrotating uniform cantilever beams with a tip mass
equal to a fraction r of the beam mass are given in reference 17. These
expressions, in somewhat simpler form, are the following: the defining
relation for the frequencies is

1+ cos 6 cosh 6 - r6(sin 6 cosh 6 - cos © sinh 8) = O (13)
where
2 | EI
SR, = ®n
n ar

and the mode shapes are

sinh 6, + sin 6,

¥,(x) = sinh x - sin x + (cos x - cosh x)

(14)

cosh en + cos en

In addition to the defining relation for the frequency, reference 17
also gives values of en for the first three modes of cantilevers and

for several values of r. OSome of these resulits, which are pertinent to
helicopter blades, are plotted in figure 17. Values of 9n2 rather than

en are plotted, because en2 is directly proportional to frequency and

corresponds to the nonrotating frequency coefficients a, presented
previously.

For iarger values of r fairly accurate values of 9n2 can be
obtained from the following approximate expression:

2 2 1
n ( a )r=0 L+ kpr (2)

where Kn is a constant for each mode which can be determined from the

frequency results for the largest value of r - in this case, 2. Equa-
tion (15) can also be used for nonuniform beams and for hinged as well as
cantilever beams.
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The variation of the Southwell zero-offset coefficlent with tip mass
is given in figure 18 for the first three modes of a uniform cantilever
beam. These resulits were computed by using the mode shape of the nonro-
tating beam presented in equation (lh); the integrations were performed
snalytically. Although only three points were used to establish each
curve of figure 18, the fairing should be quite accurate since the vari-
ations shown are almost linear,

The Southwell coefficients of figure 18, in conjunction with the
nonrotating-beam frequency coefficlents of figure 17, should permit very
accurate estimates for the bending frequencies of rotating uniform beams
with a tip mass except possibly for the first mode, for which a correction
may be made in accordance with results given in figure 8 for large values
of the rotational-speed parsmeter.

The effect of root offset has not been studied for this case, but
offset-correction factors can be obtalned from the mode shapes defined by
equation (14).

Uniform hinged beam.- By using the method of reference 17, expressions
defining the bending frequencles and mode shapes of nonrotating uniform
hinged beams with a mass at the tip have been determined. The defining
relation for the frequency is

oré + coth & - cot 8 = 0 (16)

and the mode shapes are given by

sinh en

gin x 1
sin en ( 7)

yn(x) = sinh x +

Values of 6, have been determined for several values of r; these
results are given in fligure 19 as frequency coefficients en2, together
with the frequency coefficients for the case of zero tip mass.

By using the nonrotating-beam mode shape, given by equation (17),
velues for the zero-offset Southwell coefficient have been determined
for hinged beams with a tip mass and are given in figure 20. TFor the
pendulum mode, Kb is always unity and therefore is not shown. The

results in figures 19 and 20 together permit the rapid estimation of the
bending frequencles of rotating uniform hinged beams with a mass at the
tip.
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Pendulum-mode results for hinged beams with linear mass distribu-
tions.~- The zero-offset Southwell coefficient for the pendulum mode of

& hinged beam is equal to unity, regardless of the mass or stiffness
distribution of the beam. For the case of hinge offset, however, the
Southwell coefficient is independent of stiffness distribution but varies
considerably with beam mass distribution and with the tip mass. A chart
(see fig. 21) has been prepared which permits the rapid estimation of the
offgset~correction factor to the Southwell coefficient for hinged beams
with an approximately linear mass distribution plus a mass at the tip.

First bending mode frequency of nonuniform hinged beam.- A simple

method is Indicated in appendix B for obteining an approximate first
mode shape for any beam with a t1p mass from a knowledge of the beam
mode shape without a tip mass. Once such a shape is determined, the
fundamental bending frequencies of the rotating and nonrotating beams
can be determined very easlly by application of the Rsyleigh frequency
equation (eq. (1)).

Rotating Beams With Nonlinear Mass Distribution and
Approximately Linear Stiffness Distribution

In the section of this report concerned with the evaluation of the
Rayleigh approach, a modified form of the zero-offset Southwell coeffi-
cient Kon‘ was shown to be insensitive to variations in beam tip mass.

This coefficient is defined for both cantilever and hinged beams by equa-
tion (11).

In order to determine whether this new coefficient is also insensi-
tive to other variations in beam mass distribution, all values of Kbn

presented in the charts for rapid frequency estimation were converted to

KO '. For each stiffness distribution Kbn' was found to be salmost con-
n

stant for each mode, the differences being of the same order of magnitude
as the errors inherent in the Rayleigh approach used herein.

To facilitate the estimation of bending frequencies for rotating
beams with large tlp masses or possibly other nonlinesr mass distribu-
tions, values of Kbn' for all the beams tregted in the present report

are plotted in figure 22(a) for cantilever beams and in figure 22(b) for
hinged beams. Curves have been faired through the points to give average

values for Kbn' and thus for Ky for beams with approximetely linesar
n

stiffness distributions and with any mass distribution. In analyzing
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these results, the facts that frequency is a function of the square root
of Ko and that the influence of Kb on frequency decreases wlth
n n

incresse in mode number should be kept in mind.

From equation (11) it is apparent that the first bending frequency
of the nonrotating beam cantilevered at the root and the nth vending fre-
quency of the nonrotating beam with its actual end fixity are required
to determine Kon (and thus the bending frequency of the rotating beam)

- from a knowledge of Kon'. In spite of this complication, however, the

charts presented should be useful in design studies involving rotating

beams with nonlinear mass distributions but with approximately linear

stiffness distributions. It should be emphasized at this point thet the

constancy of KO ' has been demonstrated for only a limited variety of
n

mass distributions, and thus epplication to blades having mass distribu-
tions radically different from those considered in this report should be
made with caution.

Rotating Beams With Mess and Stiffness Distributions

Not Representable by Foregoing Approximations

The charts presented in thls report permlt the rapid estimation of
bending frequencies for rotating beams with e mass and stiffness distri-
bution each of which can be reasonebly epproximated by a straight line and
for uniform beams with a tip mess; also the charts facilitate the estima-
tion of bending frequenciles for rotating beams with fairly arbltrary mass
digstributions and approximately lineer stiffness distributions. For
other cases, for example, beams In which the stiffness varies lrregularly
all along the blade, the baslc Raylelgh energy method utilizing the modes
of the nonrotating beam may be used. Although this method hes been eval-
uated in this report only for linear distributions of mass and stiffness
and concentrated tip mass, there is no reason to believe that it will not
work equally well for other distributions. All that is required in this
approach is the frequency and mode of the nonrotating beam, which can be
determined by methods such as are described Iin references 2 and 15. (A
method which gives directly the required first derivative of the mode as
well as the mode shape itself is preferable.) With such results the
integrals of equation (1) can be evaluated readily by accurate numerical
methods such as those of reference 15, and values cen be obtained for the
Southwell coefficient from which the bending frequenciles at any rota-
tlonal speed can be determined with little effort.
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Mode -Expansion Method

A more accurste mode-expansion method for determining the bending
frequencies and modes of & rotating or nonrotating beem has been devel-
oped in appendix B and has been used as a yardstick in the evaluation of
the Rayleigh approach. In this approach the lowest three bending modes
and frequencies are obtained by the solution of & fifth-order determinantal
equation for cantilever beams and a sixth-order equation for hinged beams.
Tn order to facilitate the further gpplication of this method to the
accurate determination of the modes and freguencies of rotating and non-
rotating beams, certain integrals which have been evaluated are presented
in table II. These results permit the setting up of frequency determi-
nants for beams with any combination of linear mass and stiffness distri-
bution, concentrated tip mass, offset, and rotatlional speed (including
many combinstions not treated herein). With the evaluation of additional
integrals (some of which are given in ref. 18), these results can be used
to determine the bending frequencies and modes for rotating and nonrotating
beams with concentrated mass at other locations or with higher order mass
and stiffness distributions. If practice dlctates the necessity of addi-
tional charts for other combinations of linear mass and stiffness distri-
bution and tip mass or for parabolic beam mass and stiffness distributions,
it might be advantageous to use this method to set up such charts if high-
speed computing machines suitable for solving the determinantal equations
are available,

Vibration in Planes Other Than Those Perpendicular

to Plane of Rotation

The frequency charts and procedures for frequency determination of
this report have all been directed toward the determination of frequencies
for uncoupled bending vibrations perpendicular to the plane of rotation.
In cases where the princlpal axis of the blade cross sections (axis about
which the stiffness is & minimum) is not parallel to the plane of rotation,
natural bending vibrations having the lowest frequency will take place
perpendicular to the chord. An extreme case of such vibrations would
occur if the blade chord were perpendicular to the plane of rotation, in
which case, blade vibrations would take plece in the plsne of rotation.

Frequencies of vibration, when the blade chord 1is inclined at any
angle V¥ with the plane of rotation, can be determined from the fre-
quencies of vibration perpendicular to the plane of rotation by means of
a simple formula proposed in reference 19: namely,

%2 - ‘”RLQ _ o2 gin? ¥
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where wRL is the frequency of bending vibrations perpendicular to the
plane of rotation and me is the frequency for bending vibratlons in a
plane meking an angle ¥ with the axis of rotation.

At large angles of attack, the indicated correction may be signifi-
cant for the lower modes. However, inssmuch as mRLE is usually 5 to

10 times as large as Q2 for the lowest bending mode of hellcopter blades
and even larger for the higher modes, in most cases the angle of attack

of the blade will have 1llttle effect on bending frequency and may be dis-
regarded. This fact is significant since it indicates that blade fre-
quency will not change sppreciably during each revolution because of
cyclic-pitch changes and thus may be assumed to be constant.

RESULTS FOR BENDING MODES

In the process of obtalning the frequency results presented in the
preceding sections of this paper, a large number of mode shapes of both
rotating and nonrotating beams with various mass and stiffness distribu-~
tions were determined. These results are presented in tabular form in
order to make them more useful in analytical studies and are compared in
this section with each other 1n order to show the effect of the various
parameters on mode shape.

Nonrotating Beams

The first three mode shapes for nine nonrotating cantilever and nine
nonrotating hinged beams with different combinations of linear mass and
stiffness distributions are glven in tables III and IV, together with their
first and second derivatives. These results were obtalned by standard
numerical-iteration procedures. For the cantllever beams (table IIIL), the
procedure of reference 15 was used with 10 stations; step-integration
procedures were used for the first mode, and equivalent-load methods were
used for the second and third modes. For the hinged beams (table IV), a
matrix-iteration procedure using weighted integration metrices similar to
those given in reference 21 was employed wilith 15 stations. More stations
were needed for the hinged beams than for the cantilever beams because the
third hinged mode has one more loop or node than the third cantilever mode.

In order to 1llustrate the accuracy of the nonrotating mode shapes
computed by this method, the exact results given for the uniform beam in
reference 20 are also lncluded in tables IIT and IV. A camparison of the
results indicates that the error of the present results 1s less than
1 percent. Nonrotating mode shapes are shown for the hinged beams in
figure 23 and for the cantilever beams in figure 24.
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Rotating Beams

The mode and frequency results for rotating beams were obtained in
the present paper by the method of appendix A. This method ylelds mode
coefficients which, when mulitiplied by the mode shapes of nonrotating
uniform beams normalized to positive tilp values and summed, give the mode
shapes of the rotating beam. These coefficients can also be used in con-
junction with the spanwise derivatives of the uniform-beam mode shapes to
obtain similsr derivatives for the rotating beams. The required uniform-
beam modes and derlvatives are given in reference 20, but they are not all
normalized to positive tip deflections and thus certaln sign modifications
are necessary. These modes and the first two derivatives are also given
in tables IIT and IV with the proper signs and tip deflectioms.

All the mode coefficients for rotating beems obtained in the present
investigation are given 1n tables V and VI. These coefficients have been
normglized in such a manner that the modes obtained by using them will
have the same tip deflection as the uniform-beam modes used in the compu-
tation. Table V contains the results for the hinged beams, whereas
table VI contains those for the cantilever beams.

Comparison of Rotating and Nonrotating Beams
Hinged beams.- The mode shapes of & uniform hinged beam for zero

rotatlonal speed and a rotational speed  equal to the first bending
frequency ath are shown In figure 25. A comparison of these shapes

indicates that although some differences between the modes exist, they
are relatively smeall, particularly for the higher modes.

A similar comparison is given in figure 26 for hinged beams with
linear mass and stiffness distributions, both zero at the tip. For this
cagse the difference in mode shapes is very small for all three modes;
this undoubtedly accounts for the fact that the Rayleigh approach was
found to be very accurate for this case. (See fig. 3.)

By comparing the results of figures 25 and 26, a large disagreement
may be noted between the mode shapes of the two besms; this disparity
apparently accounts for the substantial differences in the Southwell
coefficients for the two beams.

The calculated mode shapes have not been plotted in a form which
shows the effect of offset on the mode shapes of rotating besms; but by
comparing the mode coefficients for O- and 10-percent offsets in
table V, the effect may be seen to be small.
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Cantilever beams.- The modes of rotating and nonrotating uniform
cantilever beams are shown in figure 27. From the figure the mode shapes,
particularly those for the first and second modes, may be seen to change
appreciably with rotational speed.

A gimilar comparison can be made for cantilever beams with linear
mass and stiffness distributions on the basis of the results shown in
figure 28. 'The mode shapes vary in about the same manner with rotational
speed for this type of beam as for the uniform beam.

If the mode coefficients for O- and lO-percent offsets in table VI
are compared, the effect of offset on mode shape is again seen to be very
small for both beams.

Beams with a mass at tip.- Bending mode shapes for a rotating and a
nonrotating uniform hinged beam with a mass at the tip equal to the beam
mass are shown in figure 29. The differences in mode shape are very
small for all three modes. This similarity epparently accounts for the
excellent accuracy of the Raylelgh approach for this configuration.

Similar results for a uniform cantilever beam with a mass at the tip
equal to the beam maess are presented in figure 30. For this case, results
are given for three values of the rotationsl-speed parameter, namely,

% _ -0, 10.43, and 14.76, and also for the nonrotating uniform beam
1
without tip mass. TFrom this figure the rotating-beam mode shapes may be
seen to be only slightly different from each other but considerably 4if-
ferent from the nonrotating shape, particulaerly for the first and second
modes, and vastly different from the mode shape of the beam without a
tip mass.

Mode coefflcients for rotating uniform hinged and cantilever beans
with & mass at the tip are listed in tebles V and VI. Mode shapes for
nonrotating uniform beams with a msss at the tip have not been tabulated
but can be calculated by means of equations (14) and (17) for any value
of tip mess.

CONCLUDING REMARKS

A Rayleigh energy aspproach, which utilizes the mode shape of the
nonrotating beam as an approximation for the mode shape :0f the rotating
beam in the determination of the bending frequencies of the rotating
beam, has been evaluated. The evaluation led to the conclusion that
this approach yields reasonably accurate bending frequencles for roteting
hinged and cantilever beams with arbitrary stiffness and mass distribu-~
tions, including concentrated messes, at least within the limits of the
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rotational speeds currently encountered by helicopter blades. The evalu-
ation also showed that the Southwell coefficients vary apprecisbly with
beam mass distribution and, to a less extent, with beam stiffness distri-
Tution. A modified form of the zero-offset Southwell coefficient, which
involves the nonrotating-beam frequencies, was found to be insensitive to
changes in beam mass distribution.

By using the Rayleigh approach as & basis, several groups of charts
and asssociated procedures have been presented, which permit the rapid
estimation of the first three bending frequencies for a variety of
rotating and nonrotating hinged and cantilever beams. Since the charts
are not applicable to all beams, practice may dictate the need for addi-
tional charts which may be set up by using the methods described. The
charts and associated procedures presented in this report are summarized
below, the most easily applied being listed first:

(a) Charts are presented which permit the rapid estimation of bending
frequencies of rotating and nonrotating beams with mass and stiffness dis-
tributions, each of which can be approximated by a linear relation. In
example applications, this procedure has been shown to glve good results
for the bending frequencies of several actual helicopter blades with mass
and stiffness distributions appreciably different from linear.

(b) Charts are presented for raspidly estimating the effects of tip
mass on the rotating and nonrotating bending frequencies of uniform beams.

(c) A chart is presented which permits the rapid estimation of the
effects of offset on the pendulum frequency of hinged beams with any stiff-
ness distribution, an approximstely linear mass distribution, and a con-
centrated tip mess.

(&) A simplified procedure is presented for estimating the first
bending mode and frequency of a rotating or nonrotating hinged beam with
& tip mess from a knowledge of the first mode shape of the nonrotating
beam without a tip mass.

(e) Charts for a modified Southwell coefficient, which appears to be
insensitive to changes in beam mass distribution, are presented; these
charts permit the rapid estimation of the first three bending frequencies
of rotasting beams with approximately linear gtiffness distributions from
a knowledge of the bending frequencies of the nonrotating beam.

(f) Bending frequencies for beams with unusual mass and stiffness
distributions which cannot be estimated by using the charts can be deter-
mined directly from the Rayleigh energy equation by first calculating the
bending frequencies and associated mode shapes of the nonrotating beams.
This approach can be expected to yield results which are in error by less
(usually much less) than 3 percent, except for the first cantilever fre-
quency which may be in error by as much as 5 percent but which can easily



26 NACA TN 3459

be corrected to give a much more accurate result. . The method has the
advantage over other simplified approaches of improved accuracy and
wider applicability and over more exact approaches of simplicity and
flexivility.

A more accurate mode-expansion method for determining the bending
frequencies and modes of a rotating or a nonrotating beam hass been devel-
oped and has been used to evaluate the Rayleigh approach. In order to
facilitate the further spplication of this method to the accurate deter-
mination of modes and frequencies of rotating and nonrotating beams with
‘combinations of linear mass and stiffness distribution and concentrated
tip mass different from those considered herein, certain integrals which
have been evaluated are presented in tabular Fform.

In conjunction with obteining the freguency results which comprise
the greater part of this report, bending mode shapes were determined for
8 wide variety of hinged and cantilever beams. These resulis show the
effect of rotational speed, mass and stiffness distributions, offset,
root fixity, and other parameters on bending mode shape; they have been
tabulated in normalized form together with their first and second deriva-
tives or as mode coefficlents which, in conjunction with tabulated modes
and derlvetives of uniform beams, permit the repid determination of the
mode shape and higher derivatives as well. The tabulated results should
prove useful in other analyses, for example, in the simplified approach
presented in an appendix.

Langley Aeronauticsl Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., February 24, 1955.
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APPENDIX A

SOLUTION OF DIFFERENTIAL EQUATION FOR ROTATING BEAM
BY EXPANSION IN TERMS OF NORMAL MODES OF
UNIFORM NONROTATING BEAM
Solution by Galerkin Method
The equation of motion which defines the bending wvibrations perpen-

dicular to the plane of rotation of a rotating beam with & concentrated
mass at its tip can be written as

2
where
8(xL) =0  (x41)
8(x-L) = % (x = 1)
and

L
T=9.2f (n + e)m an + Me(L + €)
X
or, Iin nondimensional form,
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Bach normal mode of the rotating beam can be expanded in terms of
the modes of & uniform nonrotating beam with the same end restralnts

as follows:
o P . . ——
n = EZ:_An ¢q (A3)
=0 9

where the quantitles ¢q are the normalized bending mode shapes of a
stationary uniform beam, and the coefficients Anq are undetermined.

Substituting this expansion into equation (A2) gilves

d2 BT 9—2—(2 Anq¢c9 - 'bnamZ Anq¢q - rbp S(X"l)z An ¢q(1) -

dig ag2 g=0

<a1§;1>2a1 =T 53—((2 Anq¢q> =0 | | (ak)
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One way of determining the coefficients Anq from this equation

is the Galerkin procedure which consiste in mltipiying the equation
by @p end integrating over the length of the beem. Thus,

1 2 2 (= 1
S S m S a )| ax - vl [ e S gy af -
0 ag?| ax2\q=0 0 o ¢

1

© 2 1
rbn%p(l)go bn Fo(2) - (wb‘; )affo

(a5)

Integrating the first term in equation (A5) by parts twice and the
last term by parts once and msking use of the known boundary conditions
glves for either a cantilever or a hinged besm:

ani <2 1 ©
"EL 2 Ap @," dF - b2 iy > Ap $q AF -
S D g oz - n? [ 2 ey

a=0 a:ﬂRl g=0

<& . 2 1 ©
2o (1) 2 A (D) ( f >a3_2 fo by D hofe’ =0 (46)

where the primes designate differentiations with respect to X. Inter-
changing the order of integration and summstion yields:

N l""‘ S YD 2‘00_ 1
%Aano Elfp"%q" 4% - by @Anqj; oty O -

© 2 ) 1 - -
rbn%u):éo AngPq(1) + (ﬁ;) 0% > A, j; T16p '8y ax = 0 (a7)

1 g=0
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Equation (A7) cen be rewritten as

Z“:An I -bn2<Mq_p+R)+ 2 .2 | .o (A8)
25t @) * () 0
in terms of a new set of constants: namely,
W
l"'" o ot o
qu=j; ETIg,"gq" ox
1
M@=£ﬁ¢p¢qﬁ
( (49)

Rgp = r¥p(1)@q(2)

1
Sqp = fo T1fp'dq" ax

¥

These coefficients are symmetric; that is, Igqp = Ipq, and so forth.

For practical purposes, the expansion must be limited to a finite
number of nonrotating uniform-beam modes. In this case the summation
goes from ¢ =0 to m and equation (A8) yields m + 1 equations of
the form

[»+]
> AngBgp =0
= nqBqp
where
2 Q 2
WONR1

so that the coefflcients Bgp ere also symmetric.
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The modes and frequencies of the systeﬁ represented by this group
of equations can be obtalned for eny value of the rotational-speed parem-
eter Qﬁqul by equating the following determinant of the multipliers Bgp

of the mode coefficients Anq to zero:

Boo Bol Bo2 - - - Eom

Bio Bia Bizg + -+ By
B20 BQJ_ 322 s e o Bam.
. . . . . - . = O (AJJ.)

This determinantal equation can be solved by trial and error, with
any method of evalusting determinants, such as Crout's, to obtain the
frequency coeffilcients bp and subsequently the associated mode coef-

ficients Anq for a rotating beam. The resonant frequencies for Ilp,

2p, or np resonant conditions can also be obtained directly from the
determinant. For small values of Q/aNr; less then about 0.8, solutions

can also be obtained by the matrix-iteration procedure; for larger wvalues,
however, convergence is poor, and undesired negative values of the fre-
quency squared (imaginary frequencies) may be encountered before the
desired positive values are obtained. In the present investigation

the frequency determinants (eq. (All)) were solved by trigl-sand-error
methods with automstic computing machines of the punchcard type.

For the case of a beem without a tip mass, r = O, and thus qu
is not needed and Sgp is simplified slightly. If, in additlon, the
beam is uniform, Iqp &and MQP are zero by orthogonality for gq ¥ D3

thus for this case the unknown frequency coefficients bp occur only

on the principasl diagonal. If the determinantal equation is divided
by (Q/GNRl)Z: then for this case the rotational-speed parameter also

appears only in the terms on the principal diagonal.
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Evelustion of the Integrals Igp, Mgp, Rgps and Sgp

The integrals Igps qu, qu, and Sgp may be evaluated numerically

by a method such as that given in reference 15, or, if the mass and stiff-
ness distributions of the beams are defined by anslytical expressions,
they can sometimes be evaluated in closed form. (See ref. l, pp. 353-356,
for instance.) In some cases integrals already evalusted and tebulated

in reference 18 can be employed; these results, converted to the coor-
dinate system and tip deflection of the present paper, were employed where-
ever possible in the present study. In this report all integrals for

the uniform roteting beams with and without a tip mass were evaluated by
exact methods. Some were also evalusted by numerical methods in ordex

to determine how many statlions were required to obtain good accuracy. By
this procedure sbout 25 stations were found to be required for some of

the integrals involving the fourth and fifth modes.

For the nonuniform rotating beams, Igp, Mgp, end qu were evalu-
ated both exactly and numerically, but Sgp was evaluated only numeri-

cally because of the effort involved in eveluating this integral exactly.
All the integrations performed in this report are based on mode shapes
normelized to unity at the tip. Where numerical integrations were mede,
the mode shapes .and derivatives were obtained from reference 20, but the
resulte were modified to correspond to shapes with a unit positive tip
deflection.

The remainder of this appendix 1s devoted to the presentation of
results (in both numericel and analyticael form) for Igp, Mgp, Rgp»
end Sgp which were cobtalned in connection with the present study but
which are also applicable to cases not treated in this report.

Numerical results for beams with linear mess and stiffness distri-

butions with or without tip mass and offset.~ If only linear variations
in beam mass and stiffness are considered and if they are expressed as

m = mo(l ~ k&) \
(A12)

ET = EIo(1 - cx)[

then the various integrals can be evalusted expeditiously by splitting
them up as indicated in the followlng equations:
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Spq = Spqo - quk + é(Spqe - kqu-ke) + r{(l + é)qu-‘b
Igp = Igpg - cLope L
(A13)
Mapy = Map, - Mapg
RQP =r
vhere, in turn,
1 1 er2) 1 t =5 W
oo =3 ) (1 et
1
l -3 1 -
Spg, = 3 L (1’x)¢p¢q ax
1 oo
Spap = [, (- D’ &
Spage = Spao
1 ’ (A1)
SPQt = j; ¢q'¢p' ax
l 111 " -
Tap, = J; Bq'0p X
l - 1 1n -
Tope = J, B
1
Mapg = L Fqfp 4%
l - -
Mqu = \/; x¢q_¢p dx
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All these lntegrals are obviously symmetric In p and q. Numerical
values for them are given in tagble II for velues of p and g¢q Ifrom

0 to 5 for hinged beams and 1 to 5 for cantilever beams. As may be seen
from equations (Al3), these results permit the repid calculation of the
terms of a frequency determinent for a rotating beam with any combina-
tion of the following perameters: (a) linear mass distribution,

(b) linear stiffness distribution, (c) any offset (including large
values), and (d) any tip mass. In addition, the results can be used
in conjunction with values of additionsl integrals to set up similar
determinants for beams with higher order msss and stiffness distribu-
tions and beams with concentrated messes at other locations.

Integrals for uniform beams with tip mass.- In order to facilitate
the extension of the results for the uniform rotating beams to higher
modes, the exact expressions for integrals pertinent to such cases are
included herein.

The integrals for the cases where P = q can also be used to
determine values for Southwell coefficlents for modes higher than the
third. The integrals were evaluated by the method of reference 1 or
taken from reference 18 and transformed into the notation of this report.
The expressions are given in terms of the parameters og, Pg, and v¥g;

values of the flrst two can be obtained from reference 20 for wvalues
of 8 froml to®% For-s>5, ag=1 for all practical purposes

and PBg can be obtained from the appropriate frequency equation for the

nonrotating uniform beam. The square of fg 18 the frequency coeffi-
cient for the nonrotating beam s8g for the sth bending mode of a uniform
beam. Values of 95 are not required for the cantilever beams; for
hinged beams, vg = 1 for s> 3; the values for s$ 3 are given in
the following table:

7s
1.02827

1.00121

W H|®

1.00005
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Tension Iintegrals Sqp for cantilever beams:

It P?écb

. Bq* - pp*

2. 2 ' 2, 2

B pHa kg

qu = _f_B_P__ ’Z%(-l) (a,pﬁp - a,qﬁq) . _.i.BP_.:lq.
Bg" - Bp

2('30_1F * BPLL)] | teate® +
bk
ok -y J ot - p

89 ( _l)P+q

apBp - agPfq +

z(1+ &) apo{Bq}* + (-l)mqﬁpaﬁqz] - “'qﬁq{ﬁph * ('l)Pq-qBPeﬁqz:i
Bg* - Bp* |

If p=g,
S = %qPg L, 2 .z %Bg 1) 1

=1 1
r(1l + §) (Il- cx,q2Bq2 +3 cx,qﬁq)



36 NACA TN 3459

Tension integrals Sqp for hinged beams:

If pfafo,

I M agt (o AL, Mgt |
2
(s(;* . Bpu) ot - Bt {Bqu gt 27, B - At
3 . yp ¥ -
BaBp” 7 Bq r{(1 + &)
_1yPra PaPp [ b 4
q Bq_ - BP
If p#q, but p=0,
Sq0 = 8(-1)2 T 4 (1 4 &)
Bq\2 ’

q¥0:

R
el
n

<Bq2°‘q2 + 5) +r(l+8) (,'J:; BPag? + E Bqdq)

cofmi

1l 5
S = — 2 + ——
LY Ba"aq %

If p=q=0,
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Iif

If

If

If

If

It

Stiffness integrals qu for cantilever or hinged beams:

a ¥ b,
Igp=0
P=a # 0,
Bh
To = 0L
aq L
P=q=0,
TIoo = ©
Mass Integrals MqP for cantilever or hinged beams:
P¥q,
Mgp =0
P=a+#0,
1
Mag = §
P=g=0,
=z
Moo 3
Tip-mass integrals for cantilever or hinged beams:
p=gq,0or p#aq,
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APPENDIX B

AN APPROXIMATE METHOD OF OBTAINING FIRST BENDING MODE CF
HINGED BEAM WITH TIP MASS FROM FIRST BENDING MODE OF

BEAM WITHOUT TIP MASS

The vibration modes of a rotating hinged beam must satisfy the
following equation, which expresses the condition of zero moment at the
root:

L L
wRZ'/.o rmcydx—nefo (x + e)my dx = 0 (B1)

or, in dimensionless form,

2 1 1
<%i)fo mai_L (% + 8)fy d% = 0 (B2)

For any given beem the mode shapes of the nonrotating beam can
readily be shown to satisfy this criterion exactly if e 1is zero and
very closely if e 1is small; therefore, the nonrotating-beam mode shapes
are good approximations to the rotating-besm mode shapes, regardless of
the mass distribution of the beam. However, the nonrotating-beam mode
shape must be that of the beam with the same mass distribution; the pur-
pose of the present derivation is to go a step further and to obtain an
approximate first mode shape for a nonrotating besm with tip mass in
terms of the first mode of the same beam without tip mass. TIn view of
the preceding argument, the mode shape obtained in this manner should
serve as s good approximstion to the first mode of the rotating or
nonroteting beam with the same tip mass and when used in conjunction
with the Rayllegh approach (eq. (1)) should yield a good approximation
for the first bending frequency of a rotating or nonrotating hinged beam.

In deriving such a relstion the assumption is made that the second
derivative or curvature of the beam remains unchanged in the two configu-
rations. Thus, the mode shape for the beam wlth tip mass is assumed to
be of the form
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where the first mode of the rotating beem wlthout tip mess ¥y is

assumed. to be approximately equal to the nonrotating-beam first mode
shape Yq. With this mode shape, the criterion of equation (B2) becomes

2 p1 1
<-‘%) fo H%(Y, + DoX)dx - /; (X + 8)(Yy + Dp¥)dx = O (Bh)

If, now, the mass distribution is considered to be made up of the con-
tinuous distributed mass of the beam mg plus a concentrated tip mass,

equation (Bi) cen be written as

(%)2];1 max(Yy + DoX)dx + (%)21'[1(1(1) + Do] -

1
j; Ra(% + 8)(7y + DoDAE - 2(1 + ) [1y() + Do] o ()

Inasmuch as Y, and X (the pendulum mode shape) are mode shapes of
the hinged beam with mass distribution mg, ‘they mast satisfy the
orthogonality condlition for normal modes for such a beam, namely,

1
f ﬁdﬂldi=0
0]

eand, hence, equstion (B5) becomes
a 2 1 o 2 1
- —2 - - - -
<_§T>DO,/; mdxd.x+<?z—> r[Yl(l) +D0:I-Doj; myx dx -

éj;lﬁledi-éDOj;lﬁdidi-r(l+é)|:Yl(l)+D0]=O (36)
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When this equation is solved for 1Dg, the result is

ak/;l figYy d% + 8r¥y(1) - K%?)e - 1}r¥1(1)
Dy = —_—
(87 A o 2 - e

If the offset & 1is zero, equation (B7) takes the much simpler form

(BT)

or, with ¥; normalized to unity at the tip,

Dp = -1 (B9)
1
oo
[ naes

b of

NI

By comparing the relative values of the terms of equation (B7) and by
considering the overall influence of terms contalning &, small offsets
can be shown to have a negligible influence on the value of Dg for

values of the rotational-speed parameter encountered in helicopters. 3
Also, for nonrotating beams, & does not enter the problem and, hence,
can be set equal to zero; thus, as mentioned before, the mode shape,

based on the result of equation (B9), obtained in the following paragraphs,
should serve as a good epproximation for both rotating and nonrotating
beams with and without offset.

Upon substituting the value of Dg in equation (B9) into equa-

tion (B3), the desired first mode shape of the beam with a mass at the
tip is obtained as

(B1O)

o
*
il

e
1
i)
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Hn

and the slope (yl* )‘ and curvature (yl*) of this mode shape are then

given by

(m*)' =% - = (312)

(yl*)n = Yl" (Bl2)

(Eq. (B12), of course, expresses nothing more than the assumed equality
of the second derivatives.) If the mode shape of a beam with a particulsr
mass and stiffness distribution (but without tip mase) is known, expres-
sions (B10) to (Bl2) thus permit the determination of an approximate mode
shape for the same beam with any concentrated mass at the tip and can be
used to eveluste the integrals of the basic Rayleigh equation (eq. (1))

by numerical methods; reasonably sccurate values can easily be obtained
in this manner for ONR, and for Kol and Kll, from which the bending

frequency at any rotational speed can be determined directly.

Beams With Linear Mass Distribution Plus Tip Mass

For the particular case of beams with a linear mass distribution plus
8 tip mass, @3 =1 - k¥ and

1

_/;lfﬁdizdi izasc-kfol?di

o>

J
W

1
+ I

Thus

Dy = ———————— (B13)
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This result can be used in conjunction wlth the first mode shape gilven
for hinged beams with linear mass and stiffness distributlions in table IV
to obtain mode and fregquency results for such beams.

Beams With Uniform Mess Distribution Plus Tip Mass

For the case of beams with a uniform mass distribution plus a tip
mass, mg = 1 and thus

Dy = —= (BLk)

Uniform Beam With Tip Mass

For the case of a uniform beam with an arbitrary tip mass,

CEI
:I_'

EI =1

Thus, Do 1s the same as for the preceding case. In this special case

the integrals of the Rayleigh equation (eq. (1)), which permit the deter-
minetion of ONR and K and thus of wg, can be evaluated exactly by

the methods of reference 1 or 18. The results are

1
= %#\2a% = & T B15
u/; m<y1 ) ey (B152)
1 4
— n 2 Bl
EI * X FoJ——.
fo (2¥) | am = (B15b)
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1 2
f Ty yl*:ldx=——+—+——sl+3 +r +
0 {( ) 12 16 h( ) l+-]—'-
3r
1 21
I ST o
LI (;2 + 4> (B15e)
3r
1 2 -
T *\| ag =& iy -2 k _@
“/;) le[(yl)] 1{_(2+rﬁ3)<ﬁl+3) 1+L<r Bl+
3r
1 2l
=4+ (B154)
14+ 2 (2 )
3r

vhere By = 3.9266, from the results given in reference 20. In the

preceding integrations o {(ref. 20) has been taken equal to unity;
this essumption introduces a small error of less than 0.1 percent.

Equations (B15) are based on Yy rather than yl* normalized to

unity at the tip. To obtain equivalent formulas for y;* normalized to

2

unity at the tip, these results must be divided by the factor (3 2 l) .
T +

Nonrotating- and rotating-beam frequencies obtained by this method
for the uniform beam are compared with more accurate results in the sec-
tion of this paper entitled "Charts for Bending-Frequency Determination.”
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TABLE 1

EXACT AND ESTIMATED FREQUENGCIES FOR SEVERAL

MANUFACTURED BLADES

IYIMIvNWs|

AL/ LY

Wyr, RADIANS/SEC [ wg, RADIANS/SEC

m EI MODE EXACT [ESTIMATED] EXACT |ESTMATED
TRUE \\ | st 1 7.3 | 7.4 492 47.7
~FAIRED ond | 485 50.0 868 | 857
N— N | 3rd| 955 | 1010 | 1370 | 1378
I st 216 211 506 | 492
\ 2nd | 589 60.5 924 | 922
rad 1192 | 122N 1482 N 1RA N
_—\I w1 WA i 1 | Ay ANy W 1 7T W I W T anS
] | st 219 2 1.1 740 | 783
ond | 637 59.5 1320 | 134.4
N Lb_\a_ 3rd | 1260 | 1255 | 2000 | 2075
M | st 134 4.6 379 | 378
-L| “ ond | 437 416 710 | 703
1 p- | 3rd| 943 545 1250 | 1240

ROOT TIP ROOT TP

o

65he NI VOVN
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TABLE IT

VALUES FOR INTEGRATS IN THE MODE-EXPANSION METEOD OF APPENDIX A

pla Bpa, | Bpge Spax | Spgy Tpgo Toae  {¥pao| Mpax [Feas
Hinged beams wilth linear mess and stiffness distributions
ol 1/3 1/2 1/h 112 0 0 /30 1/% T
i o -0.18517|-0.05578| 1 o 0 0 j0.055T7T| =
ol2| o .09992| -.00165( 1 o] 0 0 | .00165] r
3|0 06926 -.00320] 1 o] (o] 0} .00321| =r
klo .05296| ~.0002h4{ 1 o] o} 0| .00025| r
5{ 0 -.0L287| -.00075] 1 o} 0 0 | .000TT| T
1] 1.59938| 2.30532| 1.26052} 6.80791 59.43015} 25.63938| 1/4( .1h2ak| =»
2| -.16528( -1.22063| -.18122| 3.59935 0 30.97991; O | .05286| r
1|3) -.09145 .20921| ~-.09117! 3.78925 0 L. 62284 © | .00288| r
4| -.0%037] -.21872} -.02260| 3.85869 0 T.13092| © | .00531| r
5] -.01293 12567 -.01258| 3.88921 o -3.32571] o0 | .00082{ =r
2] b.47610| 6.62225| 3.43015|17.79273| 624.12075| 299.60439| 1/b| .12999) T
213 |-1.54866| -3.43733| -.80926| 6.13170 0 239.318k 0 | .05202| T
4| ~.37008 L28431| -.37093} 6.53295 0 -15.99519! o0 | .00182| =r
5| -.153| -.52531] -.12984]| 6.73955 o 48.63946| 0 | .00582| r
3| 8.99985{-13.40607| 6.825%1|33.71970| 2716.50000{1332.5410 | /%] .127h1| =
3|41{=3.15800| -6.67345|-1.76094| 8.57T61 o] 892.5356 0 | .o51uk| =
5| -.80708 .31838| -.81443] 9.12863 0 -30.36181 O | .00130| r
" 4115.168%6| 22.65800 [11.44593 |54.58150| To¥5.0300 |3931.6Th 1/h| 12652 r
51-5.2T7717 |-10.91717 | -2.97035 | 10.9870T s 2319.820 0 | .0500L| r
5|5 22._98186 3k, 37920 [ 17.25665 | 80.37810|18500.2025 |9629.3965 0 | .12710| T
Cantllever beamg with linesr mass and stiffness distributions
1| 0.29833| 0.39272] 0.23958| 1.1619% 3.09056 0.59789| 1/410.20163| T
21 JATi6 .10558| .1863%0! 1.8uk96 0 2.97335| 0 | .03838| =
1|3| -.19809| -.26802| -.13341| .98538 0 -1.10249| O | .00508} r
L .13660 .21828| .0926T7| 1.64834 0 .93662| 0 | .00220| r
5 =.11352| -.19058] -.07526] 1.14799 0 -.67480| O | .o0009k| r
2| 1.61955| 2.16178{ 1.31905| 8.10433| 121.37958] k9.26172| 1/h} .14854| r
i3] -.0k235| -.h7251) .12583) 5.58811 o] 6h.85TTd| O | .OMTTL! T
L{ -.72797! -.91085{ -.53287| 3.39561 0 -13.73693| 0 [ .00514| =T
5t 47229 LT657L]  .3069T| 5.70988 0 18.98574+| o | .00k30| =
31 4.46488| 6.23803| 3.50050 |19.3247h| 951.63T72]| W44.99392) 1/4| .13%08] r
3i4| -.81857| -2.08457| -.29328] 8.91208 o] 367.5131 0 | .0u928| r
5|-1.53861{ -1.78527(-1.18157| 5.04050 0 ~40.7H66T] O | .0031T!
44| 9.01387| 12.86480| 6.9497h|35.72554 | 365%.3173 |21765.9083 | 1/k| .12905| =
51-2.14253 | ~k. 75477 }-1.05264 |12,17992 o} 1209.091 0 | .05007| r
5(5[15.20032] 21.94810(11.63995[57.03349| 9985.9627 (4870.T227 | /4| .12687| r

b7
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MODE RESULTS FOR NONROTATING CANTILEVER BEAMS WITH LINEAR

MASS AND STIFFNESS DISTRIBUTIONS

Station

T =

s =
$o

To
g

Ya“ = .

g"

'?55

EI = EI, (exmet solution, ref.

S\DGJNO\UI-F‘\NI\)HO

.0168
.0639
1365
.2299
3395
4611
-5959
7255
. 8624

1.0000

)
-.0926
-.3011
~.5261
-.6835
- T137
-.5895
-.3171
.0700
.5238
1.0000

0
-1.6776
~2.3240
~2.0351
~1.011h

4531

2.0194

3.3709

}4.2876

4.7095

4. 7808

-22.0345
-11.5406
-1.5432
6.9860
12.9888
15.7253
15.0599
i1.5931
6.6336
2.0k11

)

)
2281
6045
.T562
5259
.0197

- 1738

-.65Th

-.3949
2285

1.0000

3.7655
3.1181
=-3551
~k.0599
=3.5520
~3.7912
3568
. T354
7.338
7.8487

61.6972
1h.0984
24.3627
-40.5613
29.2300
1.2145
32.448
46.6579
37.2963
14.0713

m = mo; ET = Elo

S\OCO\]O\\H-F'\JII\)I—'O

.0169
.06L42
.1369
.230k

4617
.59
<7259
.8626

1.0000

0.1695
4723
LT2TL
93T

1.0968

1.2162

1.2970

1.3451

1.3676

1.3736

3.510k4
3.0282
2.5482
2.0760
1.6207
1.1937
. 8087
. 4806
2253
<0595

-.0925
-.3008
-.5257
-.6830
- 7131
-.5890
-.3166

Moy o)

5239
1.0000

~0.9051
~2.0829
-2.2495
-1.5725
=~.3015
1.2118
2.72%6
3.8698
k.5356
k,T60T

-22.0247
~11.5367
=1, Skl
6.9810
12.981k
15.7169
15.0516
11.5857
6.6278
2.0577
0

2261
6024
<1553
.5262
0197
-.k753
-.6604
~+3978

1.0000

2.2608
3.7628
1.5296
~2.291h
-5.0647
~4.9503
-1.8512
2.6262
6.2482
T-7299

61.7316
14.2680
~24.1735
-40.5000
-29. 3314
1.070k
32.4148
6.7572
37.3956
14,0565
o)




NACA TN 3459

MODE RESULTS FOR NONROTATING CANTILEVER EEAMS WITH LINEAR

TARLE ITI.- Continmued

MASS AND STIFFNESS DISTRIBUIIONS

S'bation( p4%

I3

Y3 '

i3

.0151
.0582

2159
.323h
450
-5T69

.8572
1.0000

IS\DOD—-JO\UI-I‘-‘UII\)I—'O

0.1508
-h312
6807
8962

1.0753

1.2163

1.318

1.3847

1.4182

1.4278

-.1723
-.6361
-.6907
-3971
-. 3470

.0355
.5022
1.0000

~0.TTT9
-1.8336
-2,1111
-1.6386
-.5456
9362
2.5002
3.8252
4.6675
L4.9778

)
.1871
5246
- 7053
5543
.1097

=-3927

-.6432

-. 430k
.1846

1.0000

kg.0088
14.8158
-16.8271
~3%.9664
~31.1090
-6.4431
26.1221
b7.5240
43,8272
18.6063

mo; EI = Elo(l - )

.0125
.0ko1
.1088
.1900

-k093
5426
-6879
847
1.0000

O o -1 O O W P O
oo

6

-.0518
-.1818

-.4989
-.586%
-.5622
-.3908
-.0570

L2

1.0000

-0.5178
-1.3001
-1.6530
-1.5179
-.8751
.22
1.7135
3.3378
L. 82
5.7561

~11.L4951
~T.8970
“3. 57Tk
1.3316
6.468
11.2476
1. 8933
16.4929
15.0877
9.7945

-1079
.3289
.5018
.1938
2551
- 137k
-.1768

.0240
1.0000

1.0789

2.2098

1.7288
-.0799
-2.38T1
-3.9249
~3.3940
-.1303%
5.1385
9.7602

26.4729
11.4265
-5.0368
-18.7863
-2k.1585
-16.5097
4.6998
33.2025
5k.9056
49.9675

k9



NACA TN 3459
TABLE III.- Continued

MODE RESULTS FOR NONROTATING CANTILEVER EEAMS WITH LINEAR
MASS AND STIFFNESS DISTRIBUTIONS

Station Yl Yl ' Yl" YQ Ia ' Ya“ Y5 Y5 ' 'I3

b Dmom

) 3.5961{0 ~20.5149 |0 56.8179
0.1733 ~0.8526 2.0307
0173 3.0782(-.0853 -10.2793| .2031 10.7772
L4812 -1.8657 3.1960
0654 2.5638| -.2738 -.6581} .5227 -2k, 7575
ST375 -1.9658 <9179
.1392 2,061k |- k704 7.2497| 6145 -36.565T
JOU3T ~1.2637 -2.5205

.2336 1.5835| -.5968 12.4090 | .3624 22,1859
1.1020 -.0501 I, 617
.34%8 1.1442}{-.6018 14.2921 |-.0993 6.8125
1.2164 1.3533 ~%.9663%
RIT L1580 - 1665 13.0765 |-. k960 32,2249
1.2922 2,6423 -.88%0
5946 4391 [ -.2022 9.6161 |-.5848 ho.3627
1.3362 3.5963 2.9901
. 7283 .1999( 1574 5.2513 |-.285T 29.5511
1.3562 4.1269 5.8749
.8639 .0509{ .5701 1.5398| .3018 10.3404
1.3613 4.2990 6.9825
1.0000 0 1.0000 0 1.0000 0

m=m°(1-§); EI=E10(1-§)

|C'-)’\Ocn-il(7\\.!l-l=‘\)ll\>l--’0

o] 3.16880 -16.8561 |0 5,124
0.1546 «0.7222 1.6861
.0155 2.8585-.0722 -9.5343| .1686 17757
0k -1.6728 2.8950
.0595 2.5168|-.2395 ~1.8680} 4581 -17.8557
.6921 - |-1.8638 1.2361
.1287 2.1467|-.h259 5.2807| 5817 -32.3125
.9068 ~1.3480 -1.8134
.2194 1.7557 | -. 5607 10.8679 | .hook -24.9765
. 1.0823 » 88 -.2821 » % -l,1661 pEn8
<327 1.3563|=.5 15.9363 |-.0162 -.265
1.218 1.0866 -k ,1669
493 .9647|-. 11802 14.0175 |- 4330 27.5563
13144 2.4651 -1.5214%
.5808 6034 | -.2337 11.3083 [-.5851 h2.1923
1.3748 3.5808 2.5189
7183 2979} 1244 6.7785T7 |-+ 3333 35.4166
1.hoks| - k.2586 5.9375
.8587 .08%] .5502 2.1918]-.2605 13.9636
1.4129 4.4978 T.3951
1.0000 0 1.0000 0 1.0000 1.0000

B\Dm—JO\\HF’\NI\)l—’O




NACA TN 3459

TABLE III.- Continued

MODE RESULTS FOR NONROTATING CANTILEVER BEAMS WITH LINEAR

MASS AND STIFFNESS DISTRIBUITONS

Station

1]
Yy p

'

1
!é'

I3

m= %E_ g); EI =

EIo(1 - )

‘S\OOD—JO\\N-F'\NI\)I—‘O

0.1284
376k
.6098
- 8255

1.0200

1.1899

1.3318

1.4423

1.5184%

1.5575

2.5084{ 0
2.4797| -.0491
2.3338| -.1706
2.1566| ~.3206
1.9455(-.4511
1.699% | ~.5143
1.4185[-.4692
1.10Lk8|-.2887

.7609} .0339

3911 .h796
0 1.0000

-0.4911
~1.21h6
-1.5002
-1.30h46
-.6320
1505
1.8050
3.2265
k. 4562
5.2043

-11.0011
=T.2927
-2.893%

1.9575
6.7820
10.9396
13.7170
s 4325
12.5408
T.T223
)

0
.1010
.2992
4352
.3901
1398

-.2167

-4T7L

-.1135
1077

1.0000

1.0099
1.9826
1.3592
-1.14506
-2.5029
-3.5647
-2.6041
6360
5.2112
8.923h

25.2707
9.796k
-6.5750
-18.5042
-21.5881
-11.5213
9.3586
33.1815
b7.5995
29.TT70
0

m = my(1

- 8); EI = Elp

'5\0(!)40’\\!1-!:‘“[\)]—‘0

.0194
.0722
1515

3636
L4853
6120
.Th08
. 870k
1.0000

0.1939
5284
-7929
.9911

1.1294

1.2175

1.2665

1.2887

1.2955

1.2962

4.0558{0
3.3450 [-.0607
2.6451f-.1842
1.9813|-.2908
1.3838-.3237
.8803 |-.2570
90k [-.09k6
.2218{ 136k
.0680| .1kl
.0068] .7056

-0.6069
-1.2348
-1.0659
-.3292
6672
1.6238
2.3397
2.7503
2.9121
2.9437

-15.2162
-6.2023
1.8823
T.6453
10.2185
9.7358
7.2110
k.o543
1.5122
.2282

1.17h0
1.4916
-.2901
-2.1229
-2,3870
-.8834
1.3851
3.2238
k.1081
4.3010

35.5410
2.2191
=19.6272
~19.7496
-2.7888
15.9480
23,745
18.8323
8.5833
1.b574

51
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TABLE IIT.~ Concluded

NACA TN 3459

MODE RESULTS FOR NONROTATING CANTILEVER BEAMS WITH LINEAR

MASS AND STIFFRESS DISTRIBUTIONS

Station

¥

Y2'

[

pe)

"

m=mo(l -~ X); EI =

[MEG ]

Elo (1 -

E W o 4 v & W m + o

0175

<119
-2383
3502
4728
.6017
.T338
. 8668

1.0000

0.1752
%903
7539
- 9635

1.1195

i.2257

1.2893

1.3203

1.3307

1.3318

3.6228
3.1505
2.6356
2.0961
1.5602
1.0620
.6358
. 3106
103k
.0113

0

. 260k

1170

-6955
1.

0521
1636
2680
3109

1118

0000

-0.5212
-1.1148
~1.0442
~.1288
-5049
1.4867
2.2874
2.78%6
2.9997
3.0448

-12.66%0
-5.9369
.8058
6.3475
9.5678
10.0140
8.1088
b.o84L
2.0367
«3379

0

0.9900
1.3986
~.031)
=1.T9L7
-2.3466
~1.1598
1.0759
3.1346
k.2345
1.4958

28.6145
3.6038
=15.62%1
-18.9598
-6.0124
12.4980
23.4526
21.2750
10.8683
2.0489

m= mo(l - X)

5 EI = EL,(1 = X)

A+ I - T B s )N B . D - I R = ]

[
o

.0151
0584
<1271
.2176
3261
sk 8
.5803
.T182
8589

1.0000

0.1507
4337
.6869
.9052

1.0846

1.2227

1.3198

1.3788

1.4061

1.k116

3.0750

o]

0385
1266
.2190
.2720
2507

.068%
.3458

1.

0000

0. 585k
-.8801
- 9247
- 5207
-.2128
1.1395
2.0523
2.7735
3.1987
3.3434

-8.9963

-%.9931
- 4387
k.0280
T-5634
9.4334
9.26%5
T.3015
k.2koT
1.3128
0

-.2458
- 2175
.Ok51

1.0000

0.6710
1.098
2795
-1.0798
-1.9343
-1.hg2k
.2825
2.626%
k.k100

5.1389

18.1k39
k.193%0
~-8. 8006
-1%.5066
~9.243k
4.3850
18.4222
2k.3923
18.9564
6.68571




NACA TN 3459

TABLE IV

MODE RESULTS FOR NONROTATING EINGED EEAMS WITE LINEAR MASS AND STIFFNESS DISTRIBUTIONS

Stetion | Y1 m @1 | n' =6 |Y1" sé"| o= lra' = ¢2'T " =6 [YB = g5 [1’5‘ = ¢s' } 5" = g5
m = myj; EI = BT, (exact solution, ref. 20)
0 o -2.7002 [o] o 5.0043 0 [} =T7.2193 0"
1
2
3 -.k8%0 | -l.867 7.9756 »TOOL ST9%0 | ~3%.8133 | -.6299 3.2792 65.6943
'3
5
6 -.6620 1928 | 11.6061 2257 | o026 | -10.5596 5732 4.2548 | -m9.522%
T
8
9 =3973 2.3756 9.3030 -.6005 | ~2.0600 32.9576 .1190 ~T.0548 | -10.6536
10
1
12 227k 3.6T49 3.513% | ~.294%0 %.9033 26.8434 | -.6076 2.5%5 76.8702
3 .
k1
15 1.0000 3.9297 o 1.0000 T7.0686 o] 1.0000 10.2102 o]
m = mgj EI = ET,
o) 0 0 0 0 0 0
-2.6675 . 8253 ~6.513T
1. 1778 2.9017 3217 =16.1228 | -.h342 3. 47h8
~2.4751 37708 -3.7078
2 -. 3428 5.6183 5T -28.5821 ~-.681h 69.7829
-2.1026 1.5000 STINT
3 -.18% T-9748 6997 -3, 8100 ~.6208 6L. 5864
=1.5T37 - 3784 L.9212
4 -.5879 9.8240 6745 =3%.4256 =3017 30.1h62
=.9222 =2.5660 6.8673
5 1) 3 11.05%9 5034 -24, 7037 1561 -17.7598
~.180 ~k.1825 5.7517
6 -.6620 11.6059 22h6 =10.5043 5385 “ST.TLTS
5809 -h, 8692 2.0541
7 -.6233 11.4610 ~.1000 6.1398 6758 ~TL.T578
1.3113 k. 1659 -2.5%28
8 -.5339 10.6619 | -.397T 21.7025 -5070 -53.4956
2.0450 -3.0431 -5.946L
9 -.3973 9.30%0 -.6006 32.9430 .1106 ~10.8931
2.6669 -.8832 -6.6245
10 =295 T-52719 -.6595 37.6597 | -.331L 31.3821
3.1679 1.5878 L. 2021
1 -.0083 5.52%9 =.5667 35.2256 -.6112 TO.4OUT
3.5357 3.9028 <3307
12 .227h 3.5133 | -.2935 26,7997 | -.5878 T5.1702
3.TTA3 5.6720 5.2169
13 4788 1.7 LO8T 15.2316 = 2400 52,3442
3.800% 6.6930 8.64TT
1k .T382 482, <5309 %.66%9 3365 18,2343
3.9269 7.0367 9.9528
15 1.0000 [¢] 1.0000 0 1.0000 (o]




NACA TN 3459

TABLE IV.~ Conbimued

MODE RESULTS FOR NONROTATING EINGED BEAMS WITH LINBEAR MASS AND STIFFNESS DISTRIBUTTONS

Station Yy ' " %) T, T ¥y ' 5"

6= m; mumo(l-g)

o 0 . 0 0 o o 0 & o
~2.h011 .23h9 <5,
1 -.1601 2.1968 .2823 -12.1633 | -.3806 >0 32. 485
-2.2545 3.4337 ~3.5718
2 -+ 3104 44128 5112 -22.55%09 | ~.6187 57.1675
~1.9610 1.9512 0330
3 =~ i1y, 6.5121 6413 -29.0968 | -.6118 59.0998
-1.528% Ns)5 18 3.6918
L -.54%0 8.358 Nk =30.1375 | =--3523 36,3014
=.9752 ~1.9542 6.202%
5 =.6079 g.8221 5151 =24.9921 0612 =3, 3443
6 65 | P aoen | e | 70 | akmez | ases | 020 | Lisesss
.3gh9 4. 1i96h 3.1149
T -.60%0 112731 | =-.0227 likkg 6662 -67.5091
1.1363 -4.4618 ~ ~1.2129
8 =.5272 10.9231 | ~.3201 16.15%6 5843 -61. 8610
1.8610 ~3.397T 9 ~5.1621
9 50751 10,0575 | ~.5U466 29.6539 2385 -26.7887
2,%5269 =1.4512 ~6.876T
10 - 2347 8.5728 ~.6433 37. 8479 -.2199 24,2333
3.0959 1.0303 5. 2857
1 -.0283 — 6.654T | ~.5ThT 5.5665 38.687% | -.5723 s 68.735%
12 2076 L 4883 | -.3369 31.8978 | -.6206 85.5398
3.857TT 5.661.8 4.6710
13 4635 2.3693 0406 19570 | =372 66.kThY
3.9981 6.9620 8.9872
1 .T200 .6982 50%T 6.1608 2820 25.399%
k.0%01 T.4296 10.7702
15 1.0000 o 1.0000 0 2..0000 0
m = mo; ET = Elo(l - 2)
0 o 0 0 o "] 0
~1.8612 2.8391 ~3.4482
1 -.124, 1.2999 1893 ~6.0403 | -.2299 13.9649
~L.T765 2.4317 -2.5277
2 2425 2,612 .3518 ~11.8108 | -.398% 27.3446
~L.6000 1.6557 . - T583
3 -.3ho2 %.0919 4622 ~16.5435 ~3h89 33.631%
~1.3272 .5632 1.5065
L ~43TT 5.5538 4997 -19.280% | ~.3552 29,5841,
-.9572 =-TOTL 3.2949
5 5015 6.9600 Jm26 19666 -19.1626 1335 . 2065 14.6758
6 w5304 8.2356 325 . =15.6121 .1khg 526496 ~T.9710
7 -5308 9.2994 1202 -8.4580 3882 =31. 5748
6722 -3.5362 1.57T9
8 -.480 " 10.06% | =-.1133 5 1.9007 lg34 1555 -46,9233%
13411 ~3.3992 ~1.
9 -.3966 105435 | -.3h02 34.3995 +3964 =%, 9846
2.0346 =-2.438g =437
0 -+ 2609 10,3457 | =.5027 27,2556 1085 ~20.5659
2,722 - 6351 ~5.5508
12 ~.0795 —_— 9.6854 ~.5451 1865 38,0134 -.2615 3.8912 23,7570
12 AT i 8.3825 | -.ho0k 45,7081 | ~.5209 Th. 164
3.9182 4. 7359 1.0372
13 4059 6.3673 | =-.1047 41,1267 | -.hmt 108.0221
b 6 4338 3584 3896 T 27.2670 o822 8-009% 92.3208
b 6951, 5845 . . . .
4.57%0 9.1568 13.7667

:
:
:




NACA TN 3459

TABLE IV.- Contimued

MODE RESULTS FOR NONROTATING HINGED BEAMS WITH LINEAR MASS AND STYFFNESS DISTRTBUFIONS

Station T ' T p 2 ' " Y5 ¥y’ X"
- 2\ pr o
w1 - 2); = o
0 0 0 0 0 o [0}
-2.3363 4.0912 -5.5947
1 -.1558 2.8%506 2727 =15.1hk7 ~.3730 43.3868
-2,1488 3.0857 -2.8156
2 ~.2990 5.4383 k785 -26.8339 | -.5607 65.7475
-1.788 1.3335 1.3899
3 -.4182 T7.6302 36T -31.5958 ~. 4680 55.0307
~1.26%0 =-.T308 k.oiTa
4 =038 9.2606 5186 ~28.7323 ~-.1502 ) 17.6072
-.6695 -2.6093 6.0537
5 -.5484 10.259% 34T -19.1453 2634 -27.5T45
.0096 ~3.8621 k2957
6 -.3478 10.5356 o872 - ~5.2516 -549T -58.9163
ST083 -%.2068 5225
T -5005 10.1773 | ~.1952 9.699% 5846 -62.394%
1.38%6 ~3.5727 -3.48%0
8 ~.4083 9.2456 | -.kF1k 224495 3524 ~37.4169
1.9975 -2.1027 -5. 8934
9 -.2751 T7.8663 =576 30.4780 -.0%05 3.9909
2.5203 ~.10k% =5.6463
0 -.1072 6.1992 | -.5787 32,5262 | ~.4169 k3.5972
2.9330 2.0318 -2.8473
11 088y L. hosh ~J431 28.8072 -.6068 65.517h
3.2285 3.9288 1.3765
12 03T 2.7358 | -.1812 20,8910 -.5150 62,9661
S.ha2h 5.3124 B.1459h
13 5512 1.3192 L1730 11,364k | -.1510 Lo, 7963
3.5029 6.0784 8.1k71
14 ~TERT .3538 5782 3.3516 .3921 13.4256
3.5298 6.3271 9.118
15 1.0000 o 1.0000 0 1..0000 0
mengf - B - mnos - §)
s} 0 0 0 : 0 o [
~2.1075 3.5959 -k 8668
1 -.150% 2.16%0 2937 =11.7139 -.32h5 32,6840
-1.9632 2,862 ~2.7515
2 .27k %3162 L8 ~21.3762 | =.5079 53.5102
~L.676k 1.42u7 6587
3 -.3831 6.2980 5231 -26.7516 | =.46ko 50,6502
~1.25683 - 327 3.9138
" - =.4670 T.9670 5013 -26.45102 | -.20%0 2k.6040
~.7296 -2.0558 5.4909
5 -.5157 9.201h .36k2 -20.1587 L1630 -13.7307
-.1191 =3.3735 L.6057
6 -.5236 9.9102 .1393 -9.1019 1700 ~T.2762
558 -3.9664 1.5683
7 -4877 10.0512 | -~.1251 %.56T0 5746 -60.4825
1.2046 ~3.6638 -2.3134
8 -40Th 9.5875 - 3694 18.0105 420k -I6.3612
1.8407 -2.4809 =5.2843
9 -.2847 8.5912 | -.5347 28.371T 0681 =9.9582
2.4110 ~.619% =5,9149
1 ~.1240 T.1455 | =.5760 3Boh411 | -.3262 33. 5867
2.8856 L5746 -3. 7545
1 0684 5.3954 -.4T11 32.2076 =.5765 65,2075
3.2 3.6806 : sy
12 2847 %,5362 | -.2251 25.2411 | -.5468 TL.5806
3.4812 5.3528 5.0645
13 5168 1.8125 1318 14.7929 - 2092 51,3484
3.604L - 6.3407 46798 8. L1k 26,4557
1% ST57TL 5182 5545 679 3517
3.6433 6.6828 9.7239
15 1.0000 o 1.0000 o) 1.0000 5}




NACA TN 3459

TARLE IV,- Contirmed

MODE RESULTS FOR NONROTATING HINGED EEAMS WITH LINEAR MASS AND STIFFNESS DISTRIBULIONS

Station Y, pok n" Yo p N Yo" T ' 5"

ma (1 - £) 21 = ELQ2 - B)

0 s} - 0 ] > o o (s}
~1.6%43 34651 ~3.0051

1 1103 1.2820 1643 -6.0465 | -.2003 14,3350
~1.5682 2,0642 -2.0645

2 -. 2148 2.6679 3020 <1L.672% | -.33%0 26,9253
~1.3902 1.2952 —.326%

3 ~3075 4.0886 .3882 ~15.9571 = 3597 32.1310
=1.1178 231 1.6735

L =2 3500 5.2 ol ~17.8892 | -.2482 2h.3216
~T536 =.931% 3.2227

5 -4323 6.7435 3423 -16.73%0 ~.0333 T.4502
~+3051 -2.0293 3.67hk
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TABLE IV.= Concluded

NODE RESULLS FOR NONROTATING HINGED BEAMS WETH LINEAR MASS AND STIFFNESS DISTRIBUTIONS

Station Yy n' n" T ' " X5 5 "
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MODE COEFFICIENTS FOR ROTATING BEAMS HINGED AT THE ROOT

2
i

g

Linear mass and
Tniform mess and stiffness distributions stiffness Ustridbutions
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MODE COFFFICTENTS FOR ROLATING CANTILEVER BEAMS

- 1
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Figure 1.~ Beams treated by both the "exact” and Rayleigh methods.
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Figure 5.- Effect of rotational speed on the bending frequencies of a
uniform cantilever beam.
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Figure 6.- Effect of rotational speed on the bending frequencies of a
cantilever beam with linear mass and stiffness distribution.
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Figure 9.~ Bending frequencies of a uniform hinged beam with a mass at

the tip and with zero offget. r = M.
Beam mass
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Figure 10.- Bending frequencies of s uniform hinged beem with a mass at

the tip and with zero offset as & function of cantilever-beam

rotational-speed parameter. r = M.
Beam mass
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Figure 11.- Bending frequency coefficients an for hinged beams with
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Figure 25.~ Comparilson of bending modes of a rotating and nonroteting
uniform hinged beam.
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Figure 28.- Comparison of bending modes of a rotating and nonrotating
cantilever beam with linear mass and stiffness distribution.



NACA TN 3459

12—

51
Rotating beam [ 24— = 1.)401;)
ng (mml

—— —Nonrotating beam

-6

Figure 29.-~ Comparison of bending modes of a rotating and nonrotatling
uniform hinged beam with a tip mass equal to the mass of the beam.
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